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Summary
The existing analytical expressions describing the frequency dependencies of critical bandwidth and equivalent-
rectangular bandwidth were derived from the results of different sets of listening experiments. As the corre-
sponding band-rate scales are constructed by integrating the reciprocal bandwidth function over frequency, also
the band-rate functions are based on the respectively selected experiments. The critical-bandwidth formula con-
verges to 100Hz at frequencies below about 500Hz and the critical-band-rate function is not invertible in closed
form, which complicates the application of the critical-band concept in modeling. In order to overcome these
restrictions, the data used earlier to construct and validate the bandwidth functions were re-evaluated separately
for the critical-band and the equivalent-rectangular-band concepts, and also combined. It is shown that the shape
of a critical-bandwidth-frequency formula derived from a cochlear frequency-position function that results in an
invertible critical-band-rate formula can be fitted to both data sets. Depending on frequency, the formulae predict
about 1.53 to 1.55 times larger critical than equivalent-rectangular bandwidths. Low-frequency critical band-
widths, which are overestimated compared to the data by the earlier formula, are represented more accurately
and at the same time suited better to avoid modeling artifacts. The determined functions are compared against
each other and against the previously proposed bandwidth and band-rate formulae. The results indicate that a
common function shapewith a simple parameter variation is suited to account for the data used earlier to validate
two different sets of formulae.

PACS no. 43.66.-x, 43.66.Ba, 43.66.Cb, 43.71.An

1. Introduction

The concept of critical bands introduced by Zwicker and
colleagues [1], based on studies of Fletcher and cowork-
ers [2], describes frequency bands of frequency-dependent
spectral width with no fixed position on the frequency
scale, as they appear in various psychoacoustic experiments
([3], pp. 150–158). Among those are studies on modulation
detection [4], loudness summation [5], absolute thresholds
[6], and masking patterns of narrow-band noises [7]. All
these experiments show a change of results if the spectral
width of one of the stimuli involved is increased beyond the
critical bandwidth ∆fG pfq. Therefore, the critical bands
appear to correspond to a perceptual effect common to
all these experiments, and consequently play an important
role in modeling and explaining the associate perceptual
mechanisms.

The original critical-band concept, as described in the
previous paragraph, formalizes bandwidths as they ap-
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pear in the results of different listening experiments.
While a relationship to perceptual mechanisms is possi-
ble, no assumption about the underlying processes is con-
tained in the concept. The peripheral hearing is a highly
non-linear system with frequency-dependent and level-
dependent transmission characteristics [3]. Therefore, the
critical-band concept does not assume the existence or rely
on what is often referred to as auditory filters; it may much
rather be regarded as the average representation of a spec-
tral selectivity effect observed similarly in different listen-
ing experiments at various levels [1, 3, 5].

Zwicker and colleagues defined the critical bandwidth
at low frequencies symmetric on the linear frequency scale
around the respective center frequency f (table 6.1, p. 160
of [3]). This symmetry will cause critical-band-wide anal-
ysis channels to select negative frequencies if the crit-
ical bandwidth exceeds double the corresponding cen-
ter frequency, that is if ∆fG pfq ą 2f . Bandpass filter-
ing with a filter extended beyond 0Hz has no physical
analogy and introduces undesired artifacts, which is also
true for auditory-adapted Fourier-transform algorithms
[8, 9, 10, 11]. The selection of negative frequencies oc-
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curs if ∆fG pfq ą 2f , even if ideal filtering is assumed,
and can hardly be justified by psychoacoustic experiments.
However, as Zwicker’s critical bandwidths are constant at
100Hz for center frequencies below some 500Hz, selection
of negative frequencies will occur with critical-band-wide
filters centered at frequencies below 50Hz.

Based on the critical bands, a critical-band-rate function
z pfq has been derived [12], relating frequency to critical-
band rate so that all critical bands are equally wide on
the critical-band-rate scale. Different formulae to calcu-
late critical-band rate, its inverse f pzq, and critical band-
width were proposed [13, 14, 15]. Only the latest pro-
vide an invertible critical-band-rate function reasonably
valid for the complete audible frequency range, which is
crucial for defining equally-distributed frequencies on the
critical-band-rate scale. This is for example required if a
predefined number of bandpass filters is to be distributed
equally spaced on an auditory-adapted frequency scale.
Völk [15] also proposed an extension of the original critical-
bandwidth formula that ensures ∆fpfq ď 2f and thereby
avoids the above-mentioned artifacts due to selection of
negative frequencies, resulting in a more universally appli-
cable formula.

A framework similar to the critical bands, but actually
assuming so-called auditory filters of specific shape was
proposed by Moore and Glasberg [16, 17], based on the
equivalent-rectangular bandwidths ∆fE pfq introduced by
Patterson [18]. The corresponding formulae relating fre-
quency to bandwidth and band rate differ from the critical-
band functions in magnitude and shape. The equivalent-
rectangular bands are smaller than the critical bands in
general and especially at low center frequencies. For that
reason, the selection of negative frequencies is rather un-
problematic for equivalent-rectangular-band-wide filters.

The critical-band concept is frequently applied in differ-
ent areas, for example in auditory-adapted Fourier trans-
forms [8, 11], speech coding [9], signal and system analysis
[10, 11, 19], instrumental loudness prediction [20, 21, 22],
and signal processing for auditory prostheses such as hear-
ing aids and cochlear implants [23, 24]. However, dif-
ferent arguments have been put forward, favoring one
set of bandwidth and band-rate formulae over the other
[25, 26, 27, 28, 29].

Rather than looking at the differences between the
critical-band and equivalent-rectangular-band concepts, it
is the aim of this paper to focus on their similarities and
common features. This is especially interesting from an
applied point of view, where the shape of the bandwidth
function is often more important than its absolute magni-
tude, as scaling factors are used in most models, selecting a
constant fraction of critical or equivalent-rectangular band-
width [8, 9, 30]. In order to compare both concepts, pre-
viously published results from listening experiments used
earlier to support both concepts were fitted separately and
as a whole to the function shape proposed by Greenwood
[31] based on a physiological point of view on cochlear
frequency selectivity. The determined functions were com-
pared against each other and against the previously pro-

posed bandwidth and band-rate formulae. The results indi-
cate that a common shape of the functions is rather plausi-
ble based on the data included in this study. The resulting
function’s low-frequency behavior is suited to reduce the
above-mentioned selection of negative frequencies.

It is clear that such a view on the data is not appro-
priate or intended to explain the differences between the
data sets or the underlying perceptual and decision mech-
anisms discussed elsewhere [25, 27, 28, 29]. Much rather,
the analysis is meant to pave the way for a unified and
most universally applicable critical-bandwidth formula, es-
pecially with regard to applications, in pointing out the
global commonalities of the data. Such a formula will be
of help in cases where a detailed explanation of underlying
mechanisms is less necessary than an average relation be-
tween stimuli and subject reports. However, the analysis
also shows that a common function shape with a simple
parameter variation is suited to account for the data used
earlier to validate two different sets of formulae.

The paper is structured as follows: After a brief review of
the data and previously proposed formulae for the critical-
band and equivalent-rectangular-band concepts, the fitting
procedure is motivated and introduced. Then, the result-
ing fitting parameters are tabulated and compared. As a
result, critical-bandwidth-function shape and parameters
are proposed and shown to be, based on the data included,
the best compromise available at this time. Concluding,
the corresponding critical-band-rate function and its in-
verse are constructed and the formulae are given in closed
form.

2. Critical bandwidth

According to Fastl and Zwicker [3], the level-independent
critical bandwidths given by table 6.1 (p. 160) were deter-
mined by psychoacoustic measurements at various levels
and frequencies with different experimental methods on
more than 50 subjects ([3], p. 158). While the actual stud-
ies or data included remain unclear, the references given
by Fastl and Zwicker combined with a literature review
provide several studies that most likely served as a basis
for the averaging process leading to the tabulated data, or
later as validation data. An overview of these publications
and the levels respectively loudness levels studied is given
in table I. A common conclusion of all the studies is that
the resulting bandwidths did not depend notably on the
presentation level.

The critical bandwidth estimates of the studies listed in
table I are shown as gray symbols in figure 1. Each cross
represents an inter-individual median at a specific center
frequency.

The critical bandwidths ∆fG rns were tabulated initially
by Zwicker [1] and (slightly modified) [12], as sample points
fc rns with n “ 1, . . . , 24, indicated according to [12] by
the filled black squares in figure 1. The tabulated values
were reprinted by Zwicker and Terhardt [13] with a modifi-
cation: the lowest critical bandwidth ∆fG r1s “ 80Hz was
changed to 100Hz (diamond in figure 1; cf. also [3], p. 160).
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Table I. Studies the critical-bandwidth estimates discussed in the present paper were taken from, with the respectively examined
levels or loudness levels (average values) and numbers of participants N .

ID Study Data (Loudness) Levels N

1 Zwicker 1952 [4] Abbildung 12 30, 40, 50, 60, 70, 80 phon 4

2 Zwicker 1954 [7] Abbildung 7 40, 50, 60, 80 dB/tone 2

3 Gäßler 1954 [6] Abbildung 7 10, 30, 50 dB/Hz 2

4 Zwicker 1955 [5] Section 5 a) 20, 30, 40, 50, 60, 70, 80 dB 1

5 Bauch 1956 [32] Abbildung 4 30, 45, 70 dB 2

6 Greenwood 1961 [31] Table I 50, 55, 65, 75 dB 5

7 a Schorer 1986a [26] Figure 1 (open) 65 phon/tone 4

7 b Schorer 1986a [26] Figure 1 (filled) 65 phon/tone 4

8 a Schorer 1986b [33] Figure 5 80 dB 8

8 b Schorer 1986b [33] Figure 5 50 dB 8

8 c Schorer 1986b [33] Figure 5 20 dBSL 8
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Figure 1. Inter-individual medians of the studies listed in table I
(gray crosses). Filled black squares: values tabulated by Zwicker
1961 [12]; unfilled diamond: update according to Zwicker and
Terhardt 1980 [13]. Black contours: Critical bandwidth ∆fG pfq

according to Zwicker and Terhardt ([13], solid; equation 1 of
the present paper), Traunmüller ([14], dotted), and Völk ([15],
dashed; equation 4 of the present paper).

This modification appears to be done in order to achieve
simple and continuous dependencies; especially to keep the
critical bandwidth constant at 100Hz for frequencies below
about 500Hz that is for n “ 1, . . . , 5. As an explanation,
[3] state (p. 158):

Although the lowest critical bandwidth in the audible
frequency region may be very close to 80 Hz, it is at-
tractive to add the inaudible range from 0 Hz to 20 Hz
to that critical band, and to assume that the lowest
critical band ranges from 0 Hz to 100 Hz.
Based on the updated table, Zwicker and Terhardt

([13], indicated by the subscript Z) proposed the critical-
bandwidth function

∆fGZ
pfq

Hz
“ 25` 75

«

1` 1.4

ˆ

f

kHz

˙2
ff0.69

, (1)

fitting the tabulated data of [13] with an accuracy of˘10%,
while deviating by 25% from the original value at n “ 1
(solid black contour in figure 1; cf. [3], p. 164).

Comparing equation 1 to the actual data, that is the
inter-individual medians of the listening experiment re-
sults, deviations up to 106% occur, especially at low fre-
quencies (cf. figure 1). In the remainder of this paper, the
arithmetic-mean value and the maximum of the frequency-
dependent magnitude of the relative deviation

dpfq “

„

F pfq

Rpfq
´ 1



(2)

between a function (F ) and the corresponding reference-
data set (R) will be given as a measure of similarity be-
tween function and reference in the form

pF ,R “ t100 ¨ avg |dpfq| , 100 ¨max |dpfq|u%. (3)

For the comparison of equation 1 to the underlying data
of table I, the similarity measure defined by equation 3
results to pZ,TI “ t21, 106u% . This indicates that equa-
tion 1 predicts bandwidths deviating up to 106% from the
actual data, with an arithmetic average of the deviation’s
magnitude of 21% (the percentages are rounded to the
nearest integer). When comparing two functions, greater
similarity that is better agreement with the reference is
assumed if avg |dpfq| is smaller by more than 5% for one
of the functions, and if at the same time max |dpfq| is not
larger by more than 5%. Thereby, the average agreement
is somewhat emphasized in its importance towards good
agreement over the maximum value. However, the latter is
taken into account, but with reduced importance. As de-
termining the frequency dependence of critical bandwidth
is the actual task, it is not clear whether an absolute or
a relative similarity measure is suited better for compar-
ing functions and reference. For that reason, an additional
visual comparison of functions and data is considered as
important as the numerical evaluation according to equa-
tion 3.
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Table II. Studies the equivalent-rectangular-bandwidth estimates discussed in the present paper were taken from, with the respectively
examined density levels (average) and numbers of participants N .

ID Study Data Density levels N

9 a Patterson 1976 [18] Table I (b) 40 dB 4 to 5

9 b Patterson 1976 [18] TableA-II (b) 40 dB 3 to 5

10 Houtgast 1977 [36] Figure 7 (masking) 25, 30, 45 dB 5

11 Weber 1977 [37] Table III 10, 20, 30, 40, 50 dB 3

12 Shailer&Moore 1983 [38] Figure 4 (triangles) 40 dB 3

13 a Fidell et al. 1983 [25] Table III (1-par. fit) 60 dB 1 to 4

13 b Fidell et al. 1983 [25] Table III (2-par. fit) 60 dB 1 to 4

14 Dubno&Dirks 1989 [39] Table II 40 dB 9

15 Moore et al. 1990 [40] Section IV 60 dB 6

16 Shailer 1990 [41] Table II 20, 35, 50 dB 3

17 Jurado&Moore 2010 [42] Table I, II 50, 62 dB 4 to 11

Traunmüller [14] derived a simplified set of analytic ex-
pressions for applying the critical-band concept in the fre-
quency range 0.27 ă f{ kHz ă 5.8 to speech technology.
Going beyond the frequency range targeted by Traunmül-
ler, his critical-bandwidth function is shown for the full
audible frequency range by the dotted black contour in fig-
ure 1, as a function valid for the whole audio spectrum is
targeted here. While Traunmüller’s formula is closer to the
actual data at low frequencies than Zwicker and Terhardt’s,
considerable deviations occur at the upper end of the au-
dible frequency range (cf. figure 1, pT,TI “ t18, 103u% ).

Aiming at a formula deviating as little as possible from
the data tabulated by Zwicker [12], and at the same time
avoiding the selection of negative frequencies described
above, Völk ([15], subscript V) proposed an extension to
Zwicker and Terhardt’s critical-bandwidth function. The
resulting formula

∆fGV
pfq “ ∆fGZ

pfq

¨

˚

˝

1´
1

´

38.73 f
kHz

¯2

` 1

˛

‹

‚

,

with 0 ď f ď 20 kHz

(4)

fulfills ∆fG pfq ď 2f @f , while fitting the sample values
∆fG rns of Zwicker [12] with an accuracy of ˘10% for
n “ 1, . . . , 24 (cf. dashed black contour in figure 1). As
Völk’s function is intended to increase the technical ap-
plicability of Zwicker and Terhardt’s formula in the low-
frequency range while otherwise modifying the predicted
bandwidths as little as possible, the deviation from the
actual data decreases only slightly (pV,TI “ t20, 93u%).
The shape of this formula at frequencies below 50Hz is
motivated only by signal-processing constraints, not by
psychoacoustic results. Consequently, equation 4 must be
primarily interpreted as a proposal aiming at unifying low-
frequency implementations of the critical-band concept ac-
cording to Zwicker and Terhardt’s formula (equation 1),
not as a better fit to the actual psychoacoustic data.
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Figure 2. Inter-individual medians of the studies given in ta-
ble II (gray crosses). Black contours: Equivalent-rectangular
bandwidth ∆fE pfq according to Moore and Glasberg ([16] dot-
ted, [17] dashed, and [34, 35] solid; the latter is also given by
equation 5 of the present paper).

3. Equivalent-rectangular bandwidth

Moore and Glasberg updated their originally proposed
formula [16] for the dependence of equivalent-rectangular
bandwidth ∆fE pfq on frequency twice [17, 34]. Figure 2
shows all three versions (in chronological order: black dot-
ted [16], dashed [17], and solid [34]).

The most recent function,

∆fE pfq

Hz
“ 24.7

ˆ

4.37
f

kHz
` 1

˙

, (5)

was reprinted by Moore 2004 ([35], p. 73). The studies
quoted by [16, 17, 34] as source or validation data for
the formulae are summarized, combined with more recent
work, in table II.

The equivalent-rectangular-bandwidth estimates of the
studies listed in table II are depicted per study as gray
symbols in figure 2. The crosses represent inter-individual
medians at different center frequencies. Comparing the
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most recent formula (equation 5, solid contour in figure 2)
to the inter-individual medians of the listening experi-
ment results (gray crosses), deviations up to 62% occur
(pE,TII “ t14, 62u%).

4. Critical-band rate

The critical-band rate scale is a frequency scale warped in
an auditory-adapted manner, based on the critical band-
widths. It was developed based on the finding that the hu-
man hearing system analyzes broadband sounds in spectral
sections corresponding to the critical bands ([3], p. 158).
Consequently, the frequency dependence of the critical-
band rate, assigned the unit Bark, is helpful for model-
ing characteristics of the human hearing system. Accord-
ing to Zwicker and Terhardt ([13], subscript Z), critical
bandwidth is approximately proportional to the reciprocal
of the first derivative of critical-band rate as a function of
frequency (cf. also [3], p. 159). Implementing this depen-
dency, the critical-band-rate function zZ pfq was defined
as an interpolation of the integer valued, tabulated sample
points z rms “ mBark, with m “ 0, . . . , 24, corresponding
to the also tabulated frequencies fl rms (black squares in
figure 3; [3], p. 160). The frequencies fl rms were taken from
the limits of the tabulated 24 critical bands, seamlessly ar-
ranged on the frequency scale beginning at fl r0s “ 0, so
that the upper limiting frequency of each band with center
frequency fc rκs equals the lower limiting frequency of the
next-higher band according to

fl rκ` 1s “ fl rκs `∆fGZ
pfc rκsq , κ “ 0, . . . , 23. (6)

∆fGZ
pfc rκsq grows with κ that is with frequency (black

squares in figure 1; cf. [3], p. 160).
Zwicker and Terhardt ([13], subscript Z) proposed, based

on the sample values given in [1, 12], the analytic expres-
sion

zZ pfq

Bark
“ 13 arctan

0.76f

kHz
` 3.5 arctan

ˆ

f

7.5 kHz

˙2

(7)

for the frequency dependence of critical-band rate (solid
black contour in figure 3, cf. [3], p. 164). While fitting the
tabulated sample points with an accuracy of ˘0.2Bark,
the applicability of equation 7 is limited, for being not
invertible in closed form. Furthermore, zZ pfq tends to un-
derestimate critical-band rate at f ą 16 kHz, as for exam-
ple, zZ p20 kHzq « 24.58Bark, while the critical bandwidth
of the highest critical band tabulated is ∆fGZ

pfl r23sq “
3.5 kHz. If the critical bandwidth is assumed to con-
tinue growing disproportionately with frequency for f ą
15.5 kHz, a bandwidth in the range of ∆fGZ

pfl r24sq “
4.5 kHz appears reasonable. Hence, according to equa-
tion 6,

fl r25s “ fl r24s `∆fGZ
pfl r24sq

“ p15.5` 4.5q kHz “ 20 kHz
(8)
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Figure 3. Critical-band rate z pfq as a function of frequency f
according to Zwicker and Terhardt ([13], solid; equation 7 of
the present paper), Traunmüller ([14], dotted), and Völk ([15],
dashed; equation 9 of the present paper). Black squares: tabu-
lated values according to Zwicker 1961 [12].

and the hypothetic critical-band-rate sample z r25s “
25Bark would be reached at fl r25s “ 20 kHz. Conse-
quently, zZ p20 kHzq « 24.58Bark according to equation 7
underestimates the critical-band rate at f “ 20 kHz.

Traunmüller’s formulae [14] contain an invertible
critical-band-rate function, defined for 200Hz ă f ă

6.7 kHz, where it fits the original samples with an accuracy
of ˘0.05Bark. At frequencies outside this range, it devi-
ates by up to 0.73Bark from the tabulated values (dotted
contour in figure 3).

Völk [15] proposed the invertible relation of critical-band
rate to frequency

zV pfq

Bark
“ 32.12

$

&

%

1´

«

1`

ˆ

f{Hz
873.47

˙1.18
ff´0.4

,

.

-

,

with 0 ď f ď 20 kHz,

(9)

which fits the tabulated values of Zwicker [12] with an ac-
curacy of ˘0.08Bark (dashed contour in figure 3). Further-
more, equation 9 was fitted to the originally tabulated data
extended by the pair fl r25s “ 20 kHz and z r25s “ 25Bark,
so that zV p20 kHzq « 24.86Bark. The inverse of equa-
tion 9,

fV pzq

Hz
“ 873.47

«

ˆ

32.12

32.12´ z
Bark

˙2.5

´ 1

ff
1

1.18

1
1.18

,

with 0 ď z ď 24.86Bark,

(10)

allows for computing frequencies corresponding to a given
critical-band-rate distribution (e. g. equally spaced). The
formula of [15] was constructed with the aim of being
invertible while representing the tabulated data of [12],
not the actual critical-bandwidth data. Therefore, this for-
mula may be considered a more useful implementation of
Zwicker and Terhardt’s [13] function, not a better fit to
the results of listening experiments.
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5. Equivalent-rectangular-band rate

Along with the equivalent-rectangular bandwidth, Moore
and Glasberg [16, 17, 34] proposed the equivalent-
rectangular-band rate (unit E), which may be considered
a counterpart to the critical-band rate. The functions are
depicted in chronologically ascending order by the dotted
[16], dashed [17], and solid [34] contours in figure 4. The
invertible most recent [34] version

zE pfq

E
“ 21.4 log10

ˆ

4.37
f

kHz
` 1

˙

(11)

(solid black contour in figure 4) was reprinted by Moore
(2004 [35], p. 74).

6. Cochlear frequency-position function

Greenwood [31] developed a cochlear frequency-position
function, shown to fit physiological data of different species
well [43]. In its form given by equation 2 of [31], the func-
tion relates the distance x from the apex on the cochlear
partition to frequency by

fpxq “ Ap10ax{mm ´ 1qHz. (12)

The inverse of equation 12 is the corresponding position-
frequency function

xpfq “
1mm
a

log10

ˆ

f

AHz
` 1

˙

. (13)

As Greenwood [31, 43] assumed that the critical bands
correspond to equally-long sections of the cochlea, xpfq
may also be considered Greenwood’s (subscript G) critical-
band rate zG pfq. For humans, Greenwood [43] suggested
the parameters A “ 165.4 and a “ 0.06. The corresponding
bandwidth-position function

∆fGG
pxq “

df
dx
“ a ln 10A 10ax{mm Hz (14)

is, according to [31] (equation 2), the first derivative of
the frequency-position function fpxq. Inserting equation 13
in 14 yields Greenwood’s critical bandwidth

∆fGG
pfq “ a ln 10 pf{Hz`Aq Hz (15)

as a function of frequency. This function has been validated
and is physiologically reasonable with different parameters
a and A for different species and experiments [31, 43]. Con-
sequently, equation 15 appears to be a reasonable basis
function for fitting the psychoacoustic critical-bandwidth
and equivalent-rectangular-bandwidth estimates discussed
above. Using equation 13, the same parameter set also de-
fines an invertible critical-band-rate function.
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Figure 4. Equivalent-rectangular-band rate zE pfq according to
Moore and Glasberg ([16] dotted, [17] dashed, and [34, 35] solid;
the latter is also given by equation 11 of the present paper).

7. Fitting procedure and results

From each study of tables I and II, the inter-individual
medians of the results per frequency and per experiment
were used as the fitting targets. The actual fitting pro-
cedure was a nonlinear least-squares regression of equa-
tion 15 with the respective target, implemented using the
MATLAB® R2015a curve-fitting toolbox (version 3.5.1).
Along with the procedure’s default settings, two custom
settings were used: first, the allowed parameter range was
limited to positive values, as only positive bandwidths
not decreasing with increasing frequency are in line with
Greenwood’s framework [31]. Second, the regression was
not only carried out without weighting (default setting),
but also with weighting the target-bandwidths before the
fitting with the inverse of the corresponding center fre-
quency. The weighting was intended to give each data point
frequency-independently the same impact on the fitting re-
sult, in order to avoid overemphasizing the high-frequency
range with larger bandwidths.

Using a least-squares regression as the fitting procedure
and the relative measure of similarity defined by equa-
tion 3 for comparing functions can cause situations where
the similarity-measure rankings differ from the regression
results. For that reason, combining the regression results,
which are based on absolute differences, with the relative
similarity measure and a visual inspection is considered a
reliable way of comparing different functions.

7.1. Fitting results: Individual experiments

An individual fitting was carried out for all experiments of
tables I and II providing results for more than three differ-
ent center frequencies and with the lowest center frequency
below 400Hz. All data sets fulfilling these requirements
span at least three octaves within the audible frequency
range. Studies with fewer center frequencies were included
in the target for the fitting to the pooled data discussed
below, but do not provide valid fitting targets for indi-
vidual broadband functions. The fitting results, that is the
parameters a and A of equation 15, for the accordingly rel-
evant experiments of tables I and II are given in tables III
and IV, respectively.
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Table III. Results of fitting equation 15 to the median results
of each experiment of the studies listed in table I containing
more than four center frequencies. No brackets: data weighted
by inverse center frequency; brackets: no weighting.

ID a A

1 0.083 (0.094) 211.2 (0.0)

2 0.079 (0.080) 273.4 (210.6)

3 0.070 (0.074) 334.3 (155.2)

6 0.059 (0.062) 254.9 (152.8)

7 a 0.041 (0.037) 661.0 (789.7)

7 b 0.046 (0.047) 359.1 (341.3)

8 a 0.054 (0.056) 488.4 (429.9)

8 b 0.056 (0.062) 331.4 (69.0)

Median 0.057 (0.062) 332.9 (182.9)

Mean 0.061 (0.064) 364.2 (268.6)

Table IV. Results of fitting equation 15 to the median results
of each experiment of the studies listed in table II containing
more than four center frequencies. No brackets: data weighted
by inverse center frequency; brackets: no weighting.

ID a A

10 0.066 (0.064) 169.4 (211.6)

12 0.055 (0.057) 147.4 (64.6)

13 a 0.039 (0.038) 379.3 (403.8)

13 b 0.046 (0.046) 248.6 (250.2)

14 0.043 (0.045) 363.6 (300.0)

15 0.070 (0.070) 115.6 (114.7)

17 0.060 (0.059) 136.6 (138.4)

Median 0.057 (0.058) 158.4 (175.0)

Mean 0.056 (0.056) 199.5 (197.2)

The identifiers (ID) of the studies correspond between
the tables and across the paper. An ID occurring more
than once indicates that the respective study contains data
of multiple experiments, each fitted individually and indi-
cated by additional lower-case letters. Every resulting pa-
rameter is given twice, without brackets for the fitting pro-
cedure with inverse-frequency weighting, and within brack-
ets for fitting with no weighting. At the bottom, the tables
show the averages of the parameters (medians and arith-
metic mean values).

Figures 5 and 6 contain the results of the studies from
tables I and II, respectively, as gray symbols in the back-
ground. Additionally, the fitting results of the procedure
with inverse-frequency weighting (indicated by no brackets
in tables III and IV) are shown as solid black contours. The
panels in parts a) represent the individual fits and data,
the solid black contour in panels b) indicates the function
constructed using equation 15 and the respectively corre-
sponding medians of the parameters a and A. Furthermore,
panels b) show all data of the respective table (I or II,
gray crosses). For comparison purposes, figures 5 and 6
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Figure 5. a) Individual fitting results (black contours) of equa-
tion 15 to the results of the studies in table I. Each panel rep-
resents one experiment (insert: IDs), gray crosses indicate the
respective results. b) Fitting result when using the parame-
ter median (solid black, cf. table III), and all data of table I
(gray crosses). a)&b) Gray contours: Critical bandwidths ac-
cording to Zwicker and Terhardt ([13], solid) and Greenwood
([43], dashed).
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Figure 6. a) Individual fitting results (black contours) of equa-
tion 15 to the results of the studies in table II. Each panel
represents one experiment (insert: IDs, gray crosses: results).
b) Fitting result when using the parameter median (solid black,
cf. table IV), and all data of table II (gray crosses). a)&b) Gray
contours: Equivalent-rectangular bandwidth according to Glas-
berg and Moore ([34], solid) and critical bandwidth according
to Greenwood ([43], dashed).

contain also the critical bandwidth respectively equivalent-
rectangular bandwidth functions. Both figures show the
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critical-bandwidth function according to Greenwood ([43],
equation 15 with a “ 0.06 and A “ 165.4, dashed gray
contour). Additionally, the solid gray contours represent
critical-bandwidth according to Zwicker and Terhardt [13]
in figure 5 and equivalent-rectangular bandwidth according
to Glasberg and Moore [34] in figure 6.

7.2. Fitting results: Pooled data

The fitting process was also carried out with the pooled re-
sults of all studies as the fitting target, per table (I and II)
and overall. Table V shows the parameters resulting from
fitting equation 15 to the pooled data of tables I and II,
separately (rows I and II), and to the combined data of
both tables (row I&II). Additionally, the medians over the
parameters are reprinted from tables III and IV, for com-
parison purposes. For the same reason, the parameters sug-
gested or proposed by earlier studies are included (param-
eters a and A for [34] derived from equation 5).

Figure 7 shows the results of all studies from tables I
and II as gray symbols in the background. In addition,
the critical bandwidths according to Zwicker and Terhardt
([13], solid gray) and Greenwood ([43], dashed gray), as
well as the equivalent-rectangular bandwidth according to
Glasberg and Moore ([34], dotted gray) were included for
comparison purposes. The actual fitting results for the
inverse-frequency-weighted procedure (no brackets in ta-
ble V) are shown in black. The solid and dotted black con-
tours represent the formulae fitted to the pooled data of
tables I and II, respectively. The dashed black contour indi-
cates the function fitted to the pooled data of both tables.

8. Discussion

Tables III, IV, and V indicate mostly moderate differences
between the data within and without brackets. The re-
sults of study 1 (ID 1) only allowed for a non-linear fit
(that is A ‰ 0) with inverse-frequency weighting (rep-
resented by the unbracketed data). Therefore, giving the
data frequency independently comparable influence on the
fitting procedure by inverse-frequency weighting appears
to be more in line with Greenwood’s assumptions [31, 43]
than the unweighted fitting. Additionally, comparable de-
pendencies and conclusions arise for both data sets. For
these reasons, the results of the weighted fitting procedure
are discussed in the following.

8.1. Critical bandwidth

Figure 5 reveals that the frequency-bandwidth function
proposed by Zwicker and Terhardt ([13], equation 1, solid
gray contours in figure 5) tends, at center frequencies be-
low 500Hz and above 4 kHz, to overestimate the critical-
bandwidth results of the studies listed in table I (gray
symbols in figure 5). These tendencies are somewhat re-
flected in the maximum of the relative deviation pZ,TI “

t21, 106u% between formula and data, and in the differ-
ences between equation 1 (solid gray contours in figure 5)
and the functions fitted to the individual experiments

Table V. Results of fitting equation 15 to the pooled median
results of all experiments of tables I and II, separately (I, II)
and overall (I&II). Also shown are the corresponding medians
of the parameters from the individual fits (tables III and IV),
and earlier proposals. No brackets: data weighted by inverse
center frequency; brackets: no weighting.

ID a A

I 0.069 (0.074) 264.0 (98.7)

Median Tab. III 0.057 (0.062) 332.9 (182.9)

II 0.045 (0.038) 261.3 (584.3)

Median Tab. IV 0.057 (0.058) 158.4 (175.0)

1&2 0.063 (0.065) 231.7 (158.7)

Median Tab. III& IV 0.057 (0.061) 264.2 (182.9)

Greenwood [43] 0.060 165.4

Glasberg&Moore [34] 0.047 228.8
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Figure 7. Results of the studies in tables I (ˆ) and II (`). Gray
contours: critical bandwidths according to Zwicker and Ter-
hardt ([13], solid) and Greenwood ([43], dashed), equivalent-
rectangular bandwidth according to Glasberg and Moore ([34],
dotted). Black contours: fits of equation 15 to the data per table
(cf. rows of table V: I solid, II dotted) and all data (row I&II,
dashed).

(black contours in figure 5 a). The fitted functions proceed
steeper than equation 1 below some 450Hz and shallower
above about 4 kHz, that is to say with less curvature. Sum-
marizing this paragraph, the frequency-bandwidth func-
tion given by equation 1 cannot be considered an exact or
average representation of the bandwidth estimates of the
studies listed in table I.

Comparing the data (gray symbols in figure 5)
and individually-fitted functions (black contours in fig-
ure 5 a) to Greenwood’s frequency-bandwidth formula
(equation 15) with the parameters for humans of [43]
(a “ 0.06 and A “ 165.4, dashed gray contours in fig-
ure 5) indicates a fairly well agreement in the frequency
range above about 1 kHz. At lower frequencies, Green-
wood’s function underestimates the data of table I by more

1164



Völk: Critical-band concept AUTHOR-ACCEPTED MANUSCRIPT OF THE ARTICLE
PUBLISHED IN ACTA ACUSTICA UNITED WITH ACUSTICA, VOL. 101 (2015) 1157 – 1167

than 50%, reflected also by pG,TI “ t19, 58u%. Taking into
account that the bandwidths predicted by equation 15 at
the upper limit of the audible frequency range are domi-
nated by the parameter a, the results of tables III and V
with average values between a “ 0.057 and a “ 0.074
closely confirm Greenwood’s a “ 0.06 [43]. However, the
parameter A, considerably influencing the function’s low-
frequency shape, is predicted in a wide range between
somewhat smaller and up to more than 100% larger than
Greenwood’s [43] recommendation A “ 165.4 (average val-
ues from A “ 98 to A “ 365). As a consequence, also
equation 15 with the parameters of Greenwood [43] is not
considered a well-suited representation of the listening ex-
periment results of the studies in table I, if the full audible
frequency range is targeted.

Equation 15 with the median parameters resulting from
the fitting procedures as given by table III (solid black con-
tour in figure 5) fits the data of table I with pTIIIMed, TI “

t15, 42u% (cf. figure 5). A comparable agreement results
when using the parameters fitted to the pooled data of
table I (table V, row I, pTV1, TI “ t17, 63u%).

8.2. Equivalent-rectangular bandwidth

Globally, the equivalent-rectangular-bandwidth function of
Glasberg and Moore (equation 5, solid gray contour in fig-
ure 6) fits the data of the studies listed in table II (gray
symbols) rather well, with pE,TII “ t14, 62u%. A tendency
is visible for a somewhat flatter high-frequency shape of
equation 5 (solid gray contour), compared to the fitting
results (solid black), and also compared to Greenwood’s
function (equation 15), with the parameters of [43] for hu-
mans (dashed gray contour in figure 6).

The latter function represents the data of table II with
pG,TII “ t20, 107u%, the function with the fitted param-
eters with pTIVMed, TII “ t16, 96u% . Notably, the medi-
ans of the parameters resulting from the fitting procedure
(table IV, a “ 0.057, A “ 158.4) closely resemble Green-
wood’s proposal ([43], a “ 0.06, A “ 165.4). Equation 15
with the parameters fitted to the pooled data of table II
(table V, row II) agrees to a similar extent with the data
(pTV2, TII “ t14, 56u%).

8.3. Combined results

Table V indicates that fitting equation 15 to the pooled
data (rows I, II, I&II) and individual fitting (Medians) re-
sulted in comparable parameters, for the single as well as
for the combined data sets. For that reason, and because
the pooled data provide a broader spectral coverage than
the individual data, the fitting results for the pooled data
are shown in figure 7 and discussed in the following.

Looking at the overall bandwidth-data set (gray symbols
in figure 7), again the low-frequency and high-frequency
overestimation of Zwicker and Terhardt’s function (equa-
tion 1, solid gray contour) becomes visible. This is reflected
in pZ,TI&II “ t41, 227u%. Equation 15 fitted to the pooled
data of table I (solid black contour) represents the whole
data set better, with pTV1, TI&II “ t30, 140u%.
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Figure 8. Relative deviation of equation 15 fitted to the data of
table I (solid) and table II (dashed) from equation 15 fitted to
the pooled data.

Glasberg and Moore’s bandwidth function (equation 5,
dotted gray contour in figure 7) and equation 15 fitted to
the pooled data of table II (dotted black contour) rep-
resent the overall data set with comparable accuracies
(pE,TI&II “ t24, 57u% vs. pTV2, TI&II “ t24, 62u%). Fig-
ure 7 again reveals the tendency for both functions to un-
derestimate the high-frequency section of the data.

Greenwood’s bandwidth function (equation 15) with the
parameters of [43] for humans (dashed gray contour in fig-
ure 7) is comparable to the function fitted to the data of
table II at low center frequencies (dotted black), and to the
function fitted to the data of table I in the high-frequency
range (solid black). Compared to the pooled data, a devi-
ation of pG,TI&II “ t19, 107u% occurs.

Equation 15 fitted to the overall-pooled data results in
pTV1&2, TI&II “ t22, 118u%, indicated by the dashed black
contour in figure 7. Compared to Greenwood’s parame-
ters (dashed gray contour), this function visually appears
to represent the overall data set (gray crosses) at low fre-
quencies below some 250Hz better, as suggested by the
regression, even tough pG,TI&II “ t19, 107u% shows an
opposing tendency.

Comparing the functions fitted to the data of table I,
the data of table II, and the pooled data (black contours
in figure 7) reveals similar shapes, but different vertical po-
sitions that is different bandwidths. However, the relative
vertical displacement between the contours appears to be
approximately frequency independent. In order to quantify
the similarity between these three functions, figure 8 shows
the relative deviations of the functions fitted to the data
of tables I (solid) and II (dashed) from the function fitted
to the pooled data.

Both deviations shown in figure 8 depend to some ex-
tent on frequency. The function fitted to the data of ta-
ble I (solid contour) proceeds p17.2˘7.5q% above the func-
tion fitted to the pooled data, predicting some 1.09 to 1.25
times larger bandwidths. Fitting equation 15 to the data
of table II results in about 0.71 to 0.81 times smaller band-
widths than fitting to the overall-pooled data, which means
a deviation of p´24˘ 4.5q% between the contours.

For applications where the frequency dependencies listed
in the previous paragraph are tolerable, it is possible to use

1165



AUTHOR-ACCEPTED MANUSCRIPT OF THE ARTICLE VÖLK: CRITICAL-BAND CONCEPT
PUBLISHED IN ACTA ACUSTICA UNITED WITH ACUSTICA, VOL. 101 (2015) 1157 – 1167

the critical-bandwidth function fitted to the overall-pooled
data and adjust it with frequency independent factors to
the respectively desired data set (1.17 for the data of table I
and 0.76 for that of table II).

9. Summary and proposed functions

The analysis and discussion of earlier critical-bandwidth
estimates conducted in this paper supports the structure of
the analytical critical-bandwidth-frequency function pro-
posed by Greenwood [31, 43]. The function as given by
equation 15 was fitted to two data sets, namely the data
used earlier to construct and validate Zwicker and Ter-
hardt’s [13] critical-bandwidth function (equation 1) and
the data used by Glasberg and Moore [34] to derive and
confirm their equivalent-rectangular-bandwidth function
(equation 5). With the parameters a “ 0.069 and A “ 264
derived from the pooled data of table I (related to Zwicker
and Terhardt’s formula) and a “ 0.045 and A “ 261 de-
rived from the pooled data of table II (related to Glas-
berg and Moore’s latest function), equation 15 deviates
less than 50% from 50% of the respective data. Compara-
ble deviations were also achieved by multiplying frequency
independent constants c with the function resulting from
fitting equation 15 to the pooled data used by Zwicker
and Terhardt as well as Glasberg and Moore ([13, 34],
parameters a “ 0.063, A “ 232). Adapting this function
with different constants c to both data sets causes a devia-
tion from the individually fitted functions. For the studies
included here, the deviations between the approximated
and the individually-fitted functions stay for critical band-
widths below 7.8% (with c “ 1.17), and for equivalent-
rectangular bandwidths below 4.6% (c “ 0.76). Applica-
tions that can tolerate these deviations may therefore use
the critical-bandwidth-frequency function

∆fGpfq “ 0.063 ln 10 pf{Hz` 232q Hz, (16)

multiplied with a constant c, selected either as proposed
above (c “ 1.17 for Zwicker and Terhardt, c “ 0.76 for
Glasberg and Moore) or as required by the application.

Greenwood’s position-frequency function (equation 13)
provides the band-rate function corresponding to his band-
width formula. With the parameters derived here, the
critical-band rate (and at the same time the distance from
the apex on the cochlear partition) is, according to Green-
wood’s concept, given by

xpfq “
1mm
0.063

log10

ˆ

f

232Hz
` 1

˙

. (17)

The inverse, Greenwood’s actual starting point given by
equation 12, the frequency-position function

fpxq “ 232 p100.063x{mm ´ 1qHz, (18)

is required for calculating a set of frequencies approxi-
mately equally spaced on the cochlea, according to Green-
wood’s concept with the parameters derived here.

Equations 16, 17, and 18 provide a closed set of equations
for applying the critical-band and equivalent-rectangular-
band concepts to digital signal processing that are bet-
ter in line with the critical-bandwidth estimates of the
studies included here than earlier formulae. Especially low-
frequency critical bandwidths, which are overestimated by
Zwicker and Terhardt’s [13] critical-bandwidth function,
are represented more accurately by the updated formulae.
Additionally, the average data used to justify both con-
cepts can be represented in good approximation by a single
function, multiplied with frequency independent constants.
Artifacts and shortcomings as for example the undesired
selection of negative frequencies and the non-invertibility
of the critical-band rate function are reduced or avoided
by the proposed functions and parameters. Free software
implementations of the suggested formulae are available at
http://www.windacoustics.com (section Downloads).
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