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Introduction
The concept of critical bands as introduced based on stud-
ies of Fletcher and Munson (1937) by Zwicker et al. (1957)
describes frequency bands of frequency dependent spec-
tral width with no fixed position on the frequency scale,
as they appear in various psychoacoustic experiments
(cf. Fastl and Zwicker 2007, pp. 150–158). Among those
are studies on loudness summation (Zwicker et al. 1957),
absolute thresholds (Gässler 1954), and masking patterns
of narrow-band noises (Fastl and Schorer 1986). All these
experiments show a change of results if the spectral width
of one of the stimuli involved is increased beyond the criti-
cal bandwidth (CBW) ∆fG (f) centered at the respective
frequency f . Based on the critical bands, a critical-band
rate (CBR) function z (f) has been proposed (Zwicker
1961), relating frequency to CBR so that all critical bands
are equally wide on the CBR scale. Different formulae
to calculate CBR, its inverse f (z), and CBW were pro-
posed (Zwicker and Terhardt 1980, Traunmüller 1990).
A similar concept based on equivalent-rectangular band-
widths (ERBs) ∆fE (f) (Patterson 1976) was introduced
by Moore and Glasberg (1983, 1987).

The critical-band concept is frequently applied, for ex-
ample in auditory-adapted Fourier transform (Terhardt
1985), speech coding (Mummert 1997), signal analysis
(Völk et al. 2009, 2011), and signal processing for audi-
tory prostheses such as hearing aids and cochlear implants.
Previously introduced CBW and ERB functions specify
the bandwidth symmetrically around a center frequency;
however, the low-frequency bandwidths exceed double the
center frequency. This confines the applicability and uni-
versality of the concept, since a band-pass filter bandwidth
∆f(f) > 2f centered at f will introduce artifacts due to
selection of negative frequencies, even if ideal filtering is
assumed, and can hardly be justified by psychoacoustic ex-
periments. In fact, the formulae result in insufficient low-
frequency selectivity for certain applications (Mummert
1997, pp. 9–12). The analytic expression for the frequency
dependence of CBR proposed by Zwicker and Terhardt
(1980) is based on values tabulated for 0 < f < 15.5 kHz.
At higher frequencies, the formula underestimates CBR,
as shown below. In addition, the function is not invertible
in closed form, preventing the calculation of frequencies
corresponding to given CBRs, which is crucial for defining
on the CBR scale equally distributed frequencies.

Aim & Requirements
In this paper, after an overview of earlier approaches,
generalized analytic expressions for CBW and ERB are

proposed for 0 ≤ f ≤ 20 kHz, on the basis of the well-
established formulae, but defined by continuous functions
with ∆f(f) ≤ 2f ∀f . Further, an invertible CBR function
valid for the full audible frequency range is proposed.
Both, the critical bandwidth and the critical-band rate
functions fit the measurement results more accurately
than the original formulae and are especially intended
for direct parameterization of auditory-adapted signal
processing routines based on the critical-band concept.

Critical Bandwidth: Concept & Formulae
The CBW was estimated level independently as a function
of frequency based on psychoacoustic measurements with
different methods on more than 50 subjects (Fastl and
Zwicker 2007, p. 185). Originally, the CBWs ∆fG [n] were
tabulated by Zwicker (1961) as sample points fc [n] with
n = 1, . . . , 24, indicated by the black dots in figure 1.
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Figure 1: Critical bandwidth ∆fG (f) as a function of fre-
quency f ac. to Zwicker and Terhardt (1980, dashed gray
contour) and Traunmüller (1990, dotted black contour). Black
dots: originally tabulated values (Zwicker 1961); unfilled dia-
mond: update ac. to Zwicker and Terhardt (1980); light gray
bars indicate the limits of the audible frequency range.

The tabulated values were reprinted by Zwicker and
Terhardt (1980) with a modification: the lowest CBW
∆fG [1] = 80Hz was changed to 100Hz (diamond in fig-
ure 1, cf. Fastl and Zwicker 2007, p. 160). This modifica-
tion appears to be done in order to keep the dependencies
simple and continuous, especially to keep CBWs constant
at 100Hz for frequencies below about 500Hz that is for
n = 1, . . . , 5. Fastl and Zwicker (2007, p. 158) state:

“Although the lowest critical bandwidth in the
audible frequency region may be very close to
80 Hz, it is attractive to add the inaudible range
from 0 Hz to 20 Hz to that critical band, and to
assume that the lowest critical band ranges from
0 Hz to 100 Hz.”
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Based on the updated data, Zwicker and Terhardt (1980)
proposed the frequency dependent CBW function

∆fGZ (f)
Hz = 25 + 75

[
1 + 1.4

(
f

kHz

)2
]0.69

, (1)

fitting the updated data with an accuracy of ±10% (Fastl
and Zwicker 2007, p. 164, dashed gray contour in figure 1),
while deviating by 25% from the original value at n = 1.

Traunmüller (1990) derived a simplified set of analytic ex-
pressions for applying the critical-band concept to speech
technology. He specified CBW as a function of the CBR
zT (cf. below) in the range 0.27 kHz < f < 5.8 kHz by

∆fGT (zT (f))
Hz = 52548(

zT(f)
Bark

)2
− 52.56 zT(f)

Bark + 690.39
. (2)

Equation 2 is shown for the full audible frequency range
by the dotted black contour in figure 1, as a function valid
for the whole audio spectrum is targeted here.

Critical Bandwidth: Proposal
Both previous formulae for the frequency dependence of
CBW do not exhibit the desired properties, that is little
deviation from the originally tabulated CBW data and
∆f(f) ≤ 2f ∀f . However, the function

∆fGV (f) = ∆fGZ (f)
(

1− 1
(38.73f/ kHz)2 + 1

)
,

with 0 ≤ f ≤ 20 kHz
(3)

fulfills all requirements while fitting the sample values
∆fG [n] tabulated by Zwicker (1961) with an accuracy of
±10% for n = 1, . . . , 24.

The solid red contour in figure 2 shows CBW ac. to
equation 3, the data tabulated by Zwicker (1961, dots),
and ∆fGZ (f) proposed by Zwicker and Terhardt (1980,
dashed gray). The dotted line indicates ∆f(f) = 2f .
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Figure 2: Critical bandwidth ∆fG (f) ac. to the equation
proposed here (solid red contour) and to Zwicker and Terhardt
(1980, dashed gray). Black dots: tabulated original values
ac. to Zwicker (1961); dotted gray line: ∆f(f) = 2f .

Equivalent-Rectangular BW: Formulae
The ERB shown by the dotted black contour in figure 3
was originally defined by Moore and Glasberg (1983) by

∆fEM1 (f)
Hz = 6.23

(
f

kHz

)2
+ 93.39 f

kHz + 28.52. (4)
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Figure 3: Equivalent-rectangular bandwidth ∆fE (f) ac. to
Moore and Glasberg (1983, dotted black contour; 1987 solid
gray) as well as Glasberg and Moore (1990, dashed gray).

Two refinements to the original ERB formula have been
given since then. The first,

∆fEM2 (f)
Hz = 19.5

(
6.046 f

kHz + 1
)

(5)

proposed by Moore and Glasberg (1987), is indicated by
the solid gray contour in figure 3. The most recent,

∆fEM (f)
Hz = 24.7

(
4.37 f

kHz + 1
)
, (6)

is shown as a dashed gray curve in figure 3 and was
specified by Glasberg and Moore (1990) using the same
structure but slightly modified values (cf. Moore 2004,
p. 73). Equation 6 represents the current standard method
for computing the ERB at a given frequency.

None of the ERB formulae fulfills the desired low-
frequency criterion ∆f(f) ≤ 2f . Instead, ∆fEM1 (0) =
28.52Hz, ∆fEM2 (0) = 19.5Hz, and ∆fEM (0) = 24.7Hz.

Equivalent-Rectangular BW: Proposal
Based on equation 6, the formula

∆fEV (f) = ∆fEM (f)
(

1− 1
(150f/ kHz)2 + 1

)
,

with 0 ≤ f ≤ 20 kHz
(7)

is proposed for the ERB as a function of frequency, fulfill-
ing ∆f(f) ≤ 2f ∀f . Within the audible frequency range,
the largest deviation between ∆fEV (f) and ∆fEM (f) of
about 10% occurs at f = 20Hz. At f = 70Hz, the devia-
tion is less than 1% and stays below 1‰ for f ≥ 210Hz.

Figure 4 shows ∆fEV (f) as proposed here (solid red
contour) and, for comparison purposes, ∆fEM (f) as given
by Glasberg and Moore (1990, dashed gray).
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Figure 4: Equivalent-rectangular bandwidth ∆fE (f) as pro-
posed here (solid red contour) and ac. to Glasberg and Moore
(1990, dashed gray). Dotted gray line: ∆f(f) = 2f .

Critical-Band Rate: Concept & Formulae
According to Fastl and Zwicker (2007, p. 158), the CBR
was developed based on the finding that the human hear-
ing system analyzes broadband sounds in spectral sections
corresponding to the critical bands. Consequently, the
frequency dependence of the CBR, assigned the unit Bark,
is helpful for modeling characteristics of the human hear-
ing system. The CBR function z (f) is according to Fastl
and Zwicker (2007, p. 159) defined by an interpolation of
the integer valued sample points z [m] = mBark, with
m = 0, . . . , 24, corresponding to the frequencies fl [m]
(black dots in figure 5, Fastl and Zwicker 2007, p. 160).
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Figure 5: Critical-band rate z (f) as a function of frequency f
ac. to Zwicker and Terhardt (1980, black contour), Traunmüller
(1990, gray), and Greenwood (1961, 1990, black dashed). Black
dots: originally tabulated values ac. to Zwicker (1961).

The frequencies fl [m] are given by the limits of 24 critical
bands seamlessly arranged on the frequency scale, begin-
ning at fl [0] = 0, so that the upper limiting frequency of
each band with center frequency fc [κ] equals the lower
limiting frequency of the next higher band according to

fl [κ+ 1] = fl [κ] + ∆fGZ (fc [κ]) , κ = 0, . . . , 23, (8)

where ∆fGZ (fc [κ]) grows with κ that is with frequency
(Fastl and Zwicker 2007, p. 160, black dots in figure 1).
Zwicker and Terhardt (1980) proposed, based on the
sample values given by Zwicker et al. (1957) and Zwicker
(1961), the analytic expression

zZ (f)
Bark = 13 arctan 0.76f

kHz + 3.5 arctan
(

f

7.5 kHz

)2
(9)

for the frequency dependence of CBR (solid black contour
in figure 5, cf. Fastl and Zwicker 2007, p. 164). Equation 9
fits the sample points with an accuracy of±0.2Bark. How-
ever, the applicability of equation 9 for the parameteriza-
tion of auditory-adapted algorithms is limited, as it is not
invertible in closed form. Furthermore, zZ (f) has been
proposed based on values tabulated for 0 ≤ f ≤ 15.5 kHz,
while nowadays hardware and algorithms often process
signals with bandwidths exceeding the audible frequency
range 20Hz ≤ f ≤ 20 kHz. Unfortunately, zZ (f) tends
to underestimate the CBR at f > 16 kHz. For example,
zZ (20 kHz) ≈ 24.58Bark, while the CBW of the highest
critical band tabulated is ∆fGZ (fl [23]) = 3.5 kHz. If the
CBW is assumed to continue growing disproportionately
with frequency for f > 15.5 kHz, a bandwidth in the range
of ∆fGZ (fl [24]) = 4.5 kHz appears to be a reasonable
estimate. Hence, according to equation 8,

fl [25] = fl [24] + ∆fGZ (fl [24])
= (15.5 + 4.5) kHz = 20 kHz

(10)

and the hypothetic CBR z [25] = 25Bark would be
reached at fl [25] = 20 kHz. Consequently, zZ (20 kHz) ≈
24.58Bark according to equation 9 underestimates the
CBR at f = 20 kHz.

The analytic expressions proposed by Traunmüller (1990)
contain the invertible function

zT (f)
Bark = 26.81 f/Hz

1960 + f/Hz − 0.53 (11)

for the frequency dependence of CBR. This function is
defined for 200Hz < f < 6.7 kHz, where it fits the original
samples with an accuracy of ±0.05Bark, while deviating
at frequencies outside this range by up to 0.73Bark (gray
contour in figure 5). Especially, zT (0) 6= 0, which is not
in accordance with the definition of the CBR.

Assuming that positions on the basilar membrane corre-
spond to CBRs, Greenwood (1961, 1990) derived relations
between CBR and frequency from a cochlear frequency-
position function based on physiological data of different
species. Greenwood’s frequency dependence of CBR

zG (f)
Bark = 11.9 log10

(
f

165.4Hz + 0.88
)

(12)

for humans (Greenwood 1990, dashed black contour in
figure 5) is invertible, but deviates up to 2.17Bark from
the sample points originally tabulated by Zwicker (1961).

Critical-Band Rate: Proposal
None of the previously introduced formulae fulfills the
requirements requested here. Therefore, the invertible
relation of CBR to frequency

zV (f)
Bark = 32.12

1−
[

1 +
(
f/Hz
873.47

)1.18
]−0.4

 ,

with 0 ≤ f ≤ 20 kHz

(13)
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is proposed, approximating the values tabulated by
Zwicker (1961) with an accuracy of ±0.08Bark, in con-
trast to ±0.2Bark achieved by the noninvertible equa-
tion 9. Furthermore, equation 13 was fitted to the orig-
inally tabulated data extended by the pair fl [25] =
20 kHz and z [25] = 25Bark, so that more realistically
zV (20 kHz) ≈ 24.86Bark. The inverse of equation 13,

fV (z)
Hz = 873.47

[(
32.12

32.12− z/Bark

)2.5
− 1
] 1

1.18

1
1.18

,

with 0 ≤ z ≤ 24.86Bark,

(14)

allows for computing frequencies corresponding to a given
distribution (e. g. equally spaced) on the CBR scale.

Equivalent-Rectangular Band Rate
Along with the ERB, Moore and Glasberg (1983) intro-
duced the equivalent-rectangular band rate

zE1 (f)
E = 11.17 loge

∣∣∣∣ f/ kHz + 0.312
f/ kHz + 14.675

∣∣∣∣+ 43. (15)

The equivalent-rectangular band rate was given the unit
E and is indicated by the gray contour in figure 6.
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Figure 6: Equivalent-rectangular band rate zE (f) ac. to
Moore and Glasberg (1983, gray contour; 1987, dashed black)
as well as Glasberg and Moore (1990, solid black).

Combined with the refinements of the ERB, the
equivalent-rectangular band rate formula has been up-
dated twice, first by Moore and Glasberg (1987) to

zE2 (f)
E = 18.31 log10

(
6.046 f

kHz + 1
)
, (16)

(dashed black contour in figure 6), and then by Glasberg
and Moore (1990) to

zE (f)
E = 21.4 log10

(
4.37 f

kHz + 1
)

(17)

(solid black contour in figure 6, cf. Moore 2004, p. 74).
Both the latter formulae are invertible and can be imple-
mented directly in signal processing algorithms.

Summary
Equations 3, 7, 13/14, and 17 provide a closed set of
equations for applying the critical-band concept (includ-
ing equivalent-rectangular bands) to digital signal pro-
cessing. Artifacts and shortcomings as for example the

undesired selection of negative frequencies or the non-
invertibility of the critical-band rate function are avoided.
Free software implementations of the proposed formu-
lae are available from http://www.windacoustics.com
(section Downloads).
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