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Abstract
The theory of wave field synthesis is traditionally derived based on the Kirchhoff-Helmholtz integral equation for
bounded volumes with continuous secondary point source distributions on the boundary area. Usually, a secondary
source distribution on a boundary contour is used in practical implementations and the theory is adapted by reducing
the geometry to two dimensions, employing secondary line sources perpendicular to the listening area. Consequently,
the sound fields that can be synthesized are restricted to fields independent of the Cartesian coordinate direction
defined by the line source axes, explicitly excluding the synthesis of spherical waves. Usually, secondary point sources
are employed instead of line sources. In this case, correct synthesis is possible at one reference position in the listening
area if secondary source correction is applied. In this paper, the theory of wave field synthesis is revised, resulting in a
global formulation of secondary source correction that allows for correct amplitude and phase reproduction at the
reference position. Based on that framework, primary source correction (PSC) is introduced. This procedure permits
at the reference position correct synthesis of spherical waves evolving at arbitrary distances in the plane defined by
the listening area, especially including the correct inverse proportionality of level and source distance, which is not
possible using current approaches to the synthesis of spherical waves.

Introduction
Wave field synthesis (WFS) is an audio playback method,
aiming at synthesizing the reference sound field (primary
field) within a finite spatial region (Berkhout 1988).
Theoretically, based on the Kirchhoff-Helmholtz integral
equation (KHI), the primary field can be synthesized
within a listening volume using an infinite number of
secondary monopole and dipole point sources distributed
continuously on the listening volume boundary (three-
dimensional, 3D WFS, Vogel 1993). Typical primary
fields are spherical waves (Boone et al. 1995). Current im-
plementations attempt to reduce the number of secondary
sources by degenerating the boundary area to a boundary
contour (two-dimensional, 2D WFS, Spors et al. 2008).
In this case, the situation is assumed to be independent of
one arbitrary chosen Cartesian coordinate direction and
the secondary point sources are replaced by secondary
line sources with their axes along the coordinate direction
selected (Spors and Ahrens 2010). The restriction to 2D
situations prevents simulation of spherical wave fields,
since no Cartesian coordinate direction can be found for
a spherical wave to be independent of. This restriction is
usually disregarded in the derivation of WFS, resulting
in errors in the synthesized fields (Spors 2005, Spors
et al. 2008). For typical implementations, the secondary
line sources are replaced by point sources (2.5D WFS),
requiring a correction term (Berkhout et al. 1993, Spors
et al. 2008) and resulting in the fact that the synthesized
field is correct at a reference position only for closed
boundary contours (Start 1996) or on a reference line
parallel to a linear secondary source distribution (de Vries
1996). All current secondary source corrections are based
on far-field and high-frequency approximations, often
disregarding phase relations, which results in erroneous
synthetic fields, especially in the near-field and low-
frequency regions (Start 1997, Spors et al. 2008).

In this paper, an updated and extended framework for
WFS with continuous secondary source distributions is

given, including a global formulation of secondary source
correction. Furthermore, primary source correction (PSC)
is introduced, which permits the correct synthesis of
spherical waves evolving at arbitrary distances in the
plane defined by the listening area and results in the
correct inverse proportionality of level and distance for
primary point sources at the correct absolute level, which
is shown not to hold true for previous approaches of
simulating primary spherical waves by means of WFS.
The paper starts with a refinement of continuous 3D
WFS in a listening volume, followed by the discussion of
spherical and cylindrical primary sources. On that basis,
the derivations of 2D and 2.5D WFS are revised, resulting
in a general formulation of secondary source correction
and the derivation of primary source correction (PSC),
allowing for corrected reproduction of spherical waves.
Finally, with regard to implementation, monopole only
WFS is discussed. Time dependent variables are denoted
by lower case, frequency dependent variables by upper
case letters.

3D Wave Field Synthesis
Following Williams (1999), equation 8.15, the KHI can
be written so that it describes the homogeneous acoustic
pressure field p(x) within the source-free volume V , with
no field existing outside V (interior KHI). If P (x) denotes
the temporal Fourier transform of p(x), the pressure field
p(x) is given by the KHI on basis of the sound pressure
spectrum P (x0) and its directional gradient

∂

∂nP (x0) = 〈∇P (x),n(x0)〉
∣∣
x=x0

(1)

(Bronstein et al. 2001, 13.34) on the surface with x0 ∈ S0
and the inward normal n(x0) to the surface S0 by

P (x) = −
‹
S0

[
G3D(x|x0) ∂

∂nP (x0)− P (x0)

× ∂

∂nG3D(x|x0)
]
dS0, ∀x ∈ V, x /∈ S0, x0 ∈ S0

(2)



(the inward normal is typically used in WFS while the
outward normal is employed by Williams 1999, therefore
the sign is inverted in equation 2, cf. also Skudrzyk 1971,
equation 20, p. 492). G3D(x|x0) denotes the three-
dimensional free space Green’s function that can be
regarded as representation of the spatio-temporal transfer
characteristics of a monopole point source at x0 evaluated
at the position x 6= x0 (Spors et al. 2008, p. 2). According
to Skudrzyk (1971) equation 29 on p. 645, the free space
Green’s function is given by

G3D(x|x0) = e− jk|x−x0|

4π |x− x0|
, ∀x 6= x0, (3)

with the acoustical wave number

k = ω

c
= 2πf

c
= 2π

λ
(4)

(Zollner and Zwicker 1993, with the frequency f , the
speed of sound c and the wave length λ). The directional
gradient of the free space 3D Green’s function in boundary
normal direction n(x0)

∂

∂nG3D(x|x0) =
(

1
|x− x0|

+ jk
)

(x− x0)Tn(x0)
|x− x0|

× G3D(x|x0), ∀x 6= x0

(5)

(for the KHI to be taken with respect to x0, cf. Pierce 1998,
p. 165 and 166) represents the spatio-temporal transfer
characteristics of a dipole point source at x0 with its main
axis in direction n(x0) and evaluated at x 6= x0 (cf. Spors
et al. 2008, p. 2 and 3).

In the context of WFS, the KHI can be interpreted in
that the pressure field within the source free listening
volume V can be controlled by an appropriately driven
secondary source distribution on the volume surface S0.
The secondary source characteristics are described by the
free space 3D Green’s function (monopole point source)
and its directional gradient (dipole point source), while
the driving functions (the spectra of the signals the
secondary sources are driven by) are given by the primary
sound pressure spectrum and its directional gradient on
S0. Speaking descriptively, a continuous distribution of
monopole and dipole secondary sound sources along S0
allows to control the pressure field inside the source free
volume V bounded by S0 with no field outside V .

For synthesis of a specific primary field, each monopole
secondary source is driven by the directional gradient of
the primary pressure field at the respective secondary
source position x0 along the inward normal n(x0) on S0,
and the dipole sources are driven by the primary pressure
at x0. This situation is commonly referred to as 3D WFS
(Vogel 1993, Spors et al. 2008). The listening volume can
be degenerated to a half space with a boundary surface,
the latter modeled as an infinitely extended plane and
a half-sphere of infinite radius. The integration is then
reduced to the plane, assuming that the field goes to zero
at infinity (Spors et al. 2008, p. 7).

Primary Sources
In the temporal frequency domain, a primary sound
field to be synthesized by WFS needs to be given by its
sound pressure spectrum P (x0) on the volume boundary
S0 with x0 ∈ S0 and the corresponding directional
gradient in direction of the inward normal n(x0) on S0
(cf. equation 2). Consequently, arbitrary source free sound
fields can be synthesized within V if the sound pressure
distribution and its directional gradient on S0 are known,
either by measurement (data-based) or analytically, based
on primary source models (model-based, cf. Vorländer
2008). Typically applied simple primary source models
are plane, spherical, and cylindrical wave fields (Spors
et al. 2008, p. 5). Assuming the sound pressure spectrum
on a sphere with radius a → 0 around a primary
monopole point source according to Zollner and Zwicker
(1993), equation 2.91 to be denoted by P̂a, spherical
and cylindrical primary source models are introduced
in the following. More complex primary source models
for WFS have been developed (Baalman 2007, Ahrens
and Spors 2007), but are not within the scope of this
study. The field variable is without loss of generality
set to x0 ∈ S0 here, and the models are given in form
of the primary pressure field Ppf(x0), the corresponding
directional gradient ∂

∂nPpf(x0), and the local propagation
direction npf(x0) at x0.

Spherical waves
Spherical sound waves (SWs) are radiated concentrically
from a point source. The sound pressure on a spherical
shell is constant (Zollner and Zwicker 1993, section 2.3).
Skudrzyk (1971) gives the spectrum

Psw(x0|xp) = e− jk|x0−xp|

|x0 − xp|
P̂a, ∀x0 6= xp, (6)

of the pressure field created by a point source located
at xp (equation 23 on p. 349). If the spherical wave is
employed as primary source model for WFS, xp /∈ V
holds, for the KHI being valid for source free volumes.
With the local propagation direction of the pressure field

nsw(x0) = x0 − xp

|x0 − xp|
, ∀x0 6= xp, (7)

the directional gradient of the field spectrum in direction
n(x0) is given by

∂

∂nPsw(x0|xp) =
(

1
|x0 − xp|

+ jk
)

e jπnT
sw(x0)

× n(x0)Psw(x0|xp), ∀x0 6= xp.
(8)

Cylindrical waves
Concentrically diverging cylindrical sound waves (CWs)
can be regarded as if radiated from an infinitely long
pulsating cylinder, a so-called line source. The resulting
sound field is symmetric with regard to the cylinder axis,
areas of constant pressure are cylinder shells (Zollner and
Zwicker 1993, section 2.5), and it is independent of the
Cartesian coordinate direction parallel to the cylinder



axis. Here, the independence of one Cartesian coordinate
direction is indicated by the upper index 2D, for example
x2D

0 . According to Skudrzyk (1971), equation 34 and 36,
p. 427, the sound pressure field spectrum of a line source
located at x2D

p is given by

Pcw(x2D
0 |x2D

p ) =π e− j π
2 H

(2)
0
(
k
∣∣x2D

0 − x2D
p
∣∣) P̂a,

∀
(
k
∣∣x2D

0 − x2D
p
∣∣) > 0,

(9)

where H(2)
0
(
k
∣∣x2D

0 − x2D
p
∣∣) denotes the Hankel function of

the second kind, zeroth order. According to Abramowitz
and Stegun (1972), equation 9.1.3 and 9.1.4, the Hankel
functions H(1)

n (x) and H
(2)
n (x) of the first and second

kinds, nth order are for integer valued n defined by

H(1)
n (x) = Jn (x) + jYn (x) and (10)

H(2)
n (x) = Jn (x)− jYn (x) , ∀x > 0, n ∈ Z+

0 , (11)

with the Bessel functions of the first and second kinds
Jn (x) and Yn (x) (cf. Bronstein et al. 2001, p. 527). For
large arguments, the approximation

H(1)
n (x) ≈

√
2
πx

e j(x−nπ
2−

π
4 ) and (12)

H(2)
n (x) ≈

√
2
πx

e− j(x−nπ
2−

π
4 ), ∀x� 1, n ∈ Z+

0 (13)

(cf. Bronstein et al. 2001, equation 9.56a and 9.56c, p. 529).
Taking into account the local propagation direction of a
cylindrical pressure field

ncw(x2D
0 ) =

x2D
0 − x2D

p∣∣x2D
0 − x2D

p
∣∣ , ∀x2D

0 6= x2D
p , (14)

the Hankel functions of the first and second kinds, zeroth
order (equation 10 and 11) and

∂

∂nH
(2)
0 (k |x|) =− kH(2)

1 (k |x|) xTn
|x| ,

∀ (k |x|) > 0
(15)

(cf. equation 1 in combination with Zollner and Zwicker
1993, equation 2.74), the spectrum of the sound pressure
gradient in normal direction n(x2D

0 ) at x2D
0 of a line source

located at x2D
p is given by

∂

∂nPcw(x2D
0 |x2D

p ) = kπ e j π
2 H

(2)
1
(
k
∣∣x2D

0 − x2D
p
∣∣)

× nT
cw(x2D

0 )n(x2D
0 )P̂a, ∀

(
k
∣∣x2D

0 − x2D
p
∣∣) > 0.

(16)

2D Wave Field Synthesis
According to Williams (1999), p. 266, acoustical problems
can be simplified assuming a three-dimensional field
to be constant in one Cartesian coordinate direction.
The resulting situation is referred to as two-dimensional
WFS (Sonke et al. 1998, Sonke 2000, Spors et al. 2008),
while the reproduction takes place in the 3D space.
Following Williams (1999), a conversion from the 3D KHI
to a 2D problem is possible neglecting the geometrical

dependencies along the dimension the situation is assumed
to be constant in and replacing the 3D by the 2D free space
Green’s function (Skudrzyk 1971, equation 87, p. 656)

G2D(x2D|x2D
0 ) = e− j π

2

4 H
(2)
0 (k |x2D − x2D

0 |) ,

∀ (k |x2D − x2D
0 |) > 0.

(17)

The 2D free space Green’s function describes the spatio-
temporal transfer characteristics of a monopole line source
at x2D

0 , extended in the constant coordinate direction, and
evaluated at x2D (cf. Spors et al. 2008). Using the Hankel
function of the first kind, zeroth order and equation 15,
the directional gradient of the 2D free space Green’s
function with respect to x2D

0 is given by

∂

∂nG2D(x2D|x2D
0 ) = k

e− j π
2

4 H
(2)
1 (k |x2D − x2D

0 |)

× (x2D − x2D
0 )Tn(x2D

0 )
|x2D − x2D

0 |
, ∀ (k |x2D − x2D

0 |) > 0.
(18)

The directional gradient of the 2D free space Green’s
function represents the spatio-temporal transfer charac-
teristics of a dipole line source at x2D

0 , extended in the
constant coordinate direction, with its main axis in normal
direction n(x2D

0 ) and evaluated at x2D ∈ (A \ x0). With
equation 17 and 18, the 3D KHI (equation 2) can be
adapted to describe a two-dimensional situation: Within
a source-free listening area A, the spectrum P (x2D) of the
sound pressure field p(x2D, t) is given by the spectrum of
the pressure distribution on the area boundary contour
x0 and its directional gradient in inward normal direction
n(x2D

0 ) with x2D
0 ∈ x0 by

P (x2D) = −
˛

x0

[
G2D(x2D|x2D

0 ) ∂
∂nP (x2D

0 )− P (x2D
0 )

× ∂

∂nG2D(x2D|x2D
0 )
]
dx0,

∀x2D ∈ A, x2D /∈ x0, x2D
0 ∈ x0, k > 0.

(19)

In the context of WFS, equation 19 can be read in that
the pressure field within the listening area A, bounded
by x0, and in all parallel areas can be controlled by an
appropriately driven secondary line source distribution
on x0, with the line sources positioned perpendicular to
A. The secondary source characteristics are given by the
2D free space Green’s function (monopole line source)
and its directional gradient (dipole line source). Here,
appropriately driven means the monopole line sources
driven by the directional gradient of the primary pressure
field at the respective secondary source position in inward
normal direction on x0 and the dipole sources by the
primary pressure at their positions. It is important to
note that the primary field must not depend on the
coordinate direction the secondary line sources (the 2D
Green’s functions) are independent of. This fact restricts
primary fields that can be synthesized with 2D WFS to
fields independent of one Cartesian coordinate direction,
propagating perpendicular to the listening area, that is
with their normal at every field point in the listening
area. Components with other propagation directions



can not be synthesized correctly, especially including
primary spherical waves, regardless of their origin. The
traditional derivation of WFS disregards this restriction
(cf. Spors et al. 2008, equation 29), resulting in errors in
the synthesized field.

Errors are here defined as ratio between the synthesized
and the targeted field; a positive level error for example
indicates the synthesized field to be of higher level than
the reference field. Figure 1 shows the error of 2D WFS
according to equation 19 of a primary spherical field
(equations 6, 7, and 8) for a circular secondary source
contour of 1.3m radius, centered around the origin xa =
[0 0 0]T of a Cartesian coordinate system.
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Figure 1: Deviation of the pressure field created by two-
dimensional wave field synthesis (circular array at xa =
[0 0 0]T, 1.3m radius) from the targeted spherical field at x =
[0 0 0]T (black), x = [1 0 0]T (light gray), and x = [−1 0 0]T
(dark gray). Magnitude and group delay error for fixed source
at xp = [2 0 0]T, magnitude error at f = 2kHz over the
distance |x− xp| between evaluation and source position.

Each panel holds data computed for three evaluation
positions: the center of the secondary source contour
x = [0 0 0]T (black), the position x = [1 0 0]T closer to
the source (light gray) and the position x = [−1 0 0]T
farther away from the source (dark gray). The evaluation
positions lie on the line defined by the field origin
and the secondary source contour midpoint and are
selected so that the magnitudes and characteristics of
all possible errors are reflected. Errors for evaluation
positions shifted perpendicular to the line are comparable
in their characteristics but of reduced magnitude. This
geometrical configuration, especially the circular array
and the evaluation positions are used throughout this
paper. The magnitude errors are rather frequency
independent at some 5 dB, varying by about ±3 dB for

different evaluation positions within the secondary source
distribution. Level deviations of more than 1 dB are
audible (Fastl and Zwicker 2007, p. 180), and in the case
of wave field synthesis most likely to result in erroneous
distance perception, considering the absolute level to be an
important cue for auditory distance perception (Zahorik
et al. 2005). Group delay errors decrease with increasing
frequency and reach values of some ±100µs at frequencies
in the range around 50Hz. Regarding temporal resolution,
the human hearing system is most sensitive for interaural
delays, an important cue for directional hearing with
just noticeable interaural delays in the range of 50µs
(Fastl and Zwicker 2007, p. 293). This being said, the
group delay errors at low frequencies are likely to be
perceivable, possibly resulting in erroneous directional
hearing. The lower panel shows exemplary the level error
at f = 2kHz for different distances |x− xp| between
evaluation position x and primary source position xp. For
the magnitude error being rather frequency independent
(cf. upper panel), the error at f = 2kHz represents a good
indicator for the overall level error. The level error exceeds
10 dB for primary sources close to the secondary source
contour, and decays globally with primary source distance.
Consequently, distance perception in the synthetic field
is likely to be influenced by the level error, especially
for primary source distances below 10m, where human
distance perception is known to show the highest accuracy
(Zahorik 2002, Völk 2010, Völk and Fastl 2011). Since
the underlying problem is independent of the secondary
source contour geometry, comparable errors result for
circular secondary source contours of different radius and
for differently shaped closed secondary source contours.
Summarizing, the traditional procedure of simulating
spherical waves in 2D WFS results in magnitude and
group delay errors likely to be audible, with the level
error dependent on the secondary source position.

2D Primary Source Correction (PSC)
The sound field of sources small compared to the
wavelength can be approximated for large distances by
a spherical wave (Zollner and Zwicker 1993, p. 75 to 76).
This being said, the inability of 2D WFS to generate
primary spherical waves means a severe restriction. For
that reason, a procedure referred to as primary source
correction (PSC) is introduced here, allowing for 2D WFS
to synthesize the field of a primary point source located at
xA

p in the plane defined by the listening area A but outside
the listening area correctly at one reference position
xA

ref,psc within the listening area. Using equations 9, 16,
and 19, the pressure field of a primary cylindrical wave
generated by 2D WFS originating at x2D

p /∈ (A ∪ x0) and
with its normal in the listening area is described by

Pcw(x2D|x2D
p ) = −

˛

x0

[
G2D(x2D|x2D

0 ) ∂
∂nPcw(x2D

0 |x2D
p )−

− Pcw(x2D
0 |x2D

p ) ∂

∂nG2D(x2D|x2D
0 )
]
dx0,

∀x2D ∈ (A \ x0) , x2D
0 ∈ x0, x2D

p /∈ (A ∪ x0) , k > 0.
(20)



It is possible without loss of generality to adjust the
sound pressure in the field given in equation 20 at the
reference position xA

ref,psc ∈ (A \ x0) so that it represents
the pressure in the field of a hypothetical primary point
source positioned at xA

p =
(
x2D

p ∩A
)
by

Psw(xA
ref,psc|xA

p) = Pcw(xA
ref,psc|xA

p)
Psw(xA

ref,psc|xA
p)

Pcw(xA
ref,psc|xA

p)
= Pcw(xA

ref,psc|xA
p)Cps(xA

ref,psc|xA
p).

(21)

Cps(xA
ref,psc|xA

p) is referred to as the (complex-valued,
frequency dependent) primary source correction factor

Cps(xA
ref,psc|xA

p) =
Psw(xA

ref,psc|xA
p)

Pcw(xA
ref,psc|xA

p)

= e− j(k|xA
ref,psc−xA

p |−π
2 )

π
∣∣xA

ref,psc − xA
p
∣∣H(2)

0
(
k
∣∣xA

ref,psc − xA
p
∣∣) ,

∀
(
k
∣∣xA

ref,psc − xA
p
∣∣) > 0,

(22)

derived using equations 6 and 9. Cps(xA
ref,psc|xA

p) is
independent of the secondary source position x2D

0 since
PSC is done with respect to the primary source position
xA

p . The field of 2D WFS of a primary cylindrical wave
with PSC is given (equations 20 and 21) by

Psw,psc,2D(x2D|xA
ref,psc|xA

p) = −
˛

x0

[
G2D(x2D|x2D

0 )

× ∂

∂nPcw(x2D
0 |x2D

p )− Pcw(x2D
0 |x2D

p ) ∂
∂nG2D(x2D|x2D

0 )
]

× dx0 Cps(xA
ref,psc|xA

p), ∀x2D,xA
ref,psc ∈ (A \ x0) ,

x2D
0 ∈ x0, x2D

p ,xA
p /∈ (A ∪ x0) , k > 0.

(23)

The resulting field represents the field of a primary
point source in the plane defined by the listening area
A exclusively at the reference position xA

ref,psc, while
deviating from primary spherical and cylindrical wave
fields at all other positions. Figure 2 shows the deviation
between a spherical wave field originating at xp = [2 0 0]T
approximated by 2D WFS with a primary cylindrical
wave and PSC according to equation 23 and the targeted
spherical field for the setup also shown in figure 1. The
synthesis is correct at the reference position for all
frequencies and primary source distances. The magnitude
error at evaluation positions away from the reference
position is approximately frequency independent and
smaller than ±3 dB (considering the evaluation positions
selected representative for the error spectrum again), and
of slightly higher magnitude in direction of the primary
source, compared to directions farther away than the
reference position. Group delay errors occur for evaluation
away from the reference position at frequencies below
100Hz in the range of ±0.1ms. The lower panel indicates
that the correct inverse proportionality of level and
distance arises at the reference position, while deviations
up to 5 dB are visible for distances below 10m for
evaluation positions farther and especially closer to the
source than the reference position. The degeneration
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Figure 2: Deviation of the pressure field created by two-
dimensional wave field synthesis from the targeted spherical
field with a cylindrical primary field and primary source
correction (PSC). Array geometry, primary source and
evaluation positions according to figure 1.

of the area the synthesis is correct for to a reference
position means a severe restriction of 2D WFS, but allows
at the reference position for the synthesis of primary
spherical wave fields originating in the plane defined by
the listening area. This imposes no restriction compared
to directly using primary spherical waves in 2D WFS,
where the errors depend on the evaluation position, too
(figure 1). Besides, as to be shown in the following, WFS
is restricted to a reference position within the listening
area if the secondary line are replaced by point sources,
as done usually for WFS implementation.

2.5D Wave Field Synthesis
Further reduction in complexity is typically accomplished
by replacing the secondary line sources in equation 19
by point sources located at xA

0 in the listening area A
and applying a correction term (cf. Spors et al. 2008,
equation 24). xA

0 = (x2D
0 ∩A) resembles the points where

the secondary line sources intersect the listening area,
that is xA

0 ∈ x0 holds. Due to the fact that in the
considered situation 2D WFS is carried out with 3D
secondary sources, this procedure is usually referred to
as 2.5D WFS (cf. Spors et al. 2008). 2.5D WFS can be
described based on equation 19 by replacing the 2D free
space Green’s functions by secondary source corrected 3D
free space Green’s functions, as well as the gradients of
the 2D Green’s functions by corrected 3D gradients. In
the following, the (complex-valued, frequency dependent)
correction factors Css,G(xA

ref,ssc|xA
0 ) and Css,∂G(xA

ref,ssc|xA
0 )

are referred to as secondary source correction (SSC)



factors, valid for the reference position xA
ref,ssc ∈ (A \ x0).

Secondary source corrections have been proposed (Start
1997, Spors et al. 2008); here, a more general definition
is given using equations 3 and 17 for secondary monopole
sources by

Css,G(xA
ref,ssc|xA

0 ) =
G2D(xA

ref,ssc|xA
0 )

G3D(xA
ref,ssc|xA

0 ) =

= π
∣∣xA

ref,ssc − xA
0
∣∣H(2)

0
(
k
∣∣xA

ref,ssc − xA
0
∣∣)

× e j(k|xA
ref,ssc−xA

0 |−π
2 ), ∀

(
k
∣∣xA

ref,ssc − xA
0
∣∣) > 0,

(24)

and with 3, 5, and 18 for secondary dipole sources by

Css,∂G(xA
ref,ssc|xA

0 ) =
∂
∂nG2D(xA

ref,ssc|xA
0 )

∂
∂nG3D(xA

ref,ssc|xA
0 )

=

= kπ

∣∣xA
ref,ssc − xA

0
∣∣2

1 + jk
∣∣xA

ref,ssc − xA
0
∣∣H(2)

1
(
k
∣∣xA

ref,ssc − xA
0
∣∣)

× e j(k|xA
ref,ssc−xA

0 |−π
2 ), ∀

(
k
∣∣xA

ref,ssc − xA
0
∣∣) > 0.

(25)

The wave field generated by 2.5D WFS can
be computed by replacing G2D(x2D|x2D

0 ) by
G3D(x|xA

0 )Css,G(xA
ref,ssc|xA

0 ) and ∂
∂nG2D(x2D|x2D

0 )
by ∂

∂nG3D(x|xA
0 )Css,∂G(xA

ref,ssc|xA
0 ) in equation 19, using

equation 24 and 25. A 3D sound field arises, given by

P2.5D(x|xA
ref,ssc) = −

˛

x0

[
G3D(x|xA

0 )Css,G(xA
ref,ssc|xA

0 )

× ∂

∂nP (x2D
0 )− P (x2D

0 ) ∂
∂nG3D(x|xA

0 )

× Css,∂G(xA
ref,ssc|xA

0 )
]
dx0, ∀x ∈ (A \ x0) , xA

0 ∈ x0,

xA
ref,ssc ∈ (A \ x0) , xA

0 = (x2D
0 ∩A) , k > 0.

(26)

The sound field described by equation 26 represents the
intended field exclusively at the reference position. In
general, no Cartesian coordinate system exists, where the
resulting field is independent of one coordinate direction.

2.5D Primary Source Correction (PSC)
Primary source correction is directly applicable to 2.5D
WFS because of its independence of the secondary sources
and their positions. The wave field resulting from 2.5D
WFS of a primary cylindrical wave with PSC is given
using equations 9, 16, 22, and 26 by

Psw,psc,2.5D(x|xA
ref,ssc|xA

ref,psc|xA
p) = −

˛

x0

[
G3D(x|xA

0 )

× Css,G(xA
ref,ssc|xA

0 ) ∂
∂nPcw(x2D

0 |x2D
p ) − Pcw(x2D

0 |x2D
p )

× ∂

∂nG3D(x|xA
0 )Css,∂G(xA

ref,ssc|xA
0 )
]
dx0 Cps(xA

ref,psc|xA
p),

∀x ∈ (A \ x0) , xA
ref,psc,xA

ref,ssc ∈ (A \ x0) , xA
0 ∈ x0,

xA
0 = (x2D

0 ∩A) , x2D
p ,xA

p /∈ (A ∪ x0) , k > 0.
(27)

Equation 27 simplifies if identical reference positions are
selected for primary and secondary source correction.

Secondary Monopole Sources Only
It has been shown by Copley (1968) that it is possible
to achieve control over the sound pressure field within a
listening volume using a secondary monopole distribution
on the listening volume surface S0. This procedure
is referred to as simple source formulation (cf. also
Williams 1999). Another approach to discard one of
the contributions to the KHI is to use Green’s functions
that either equal zero on S0 or that show zero gradients on
S0 (Dirichlet or Neumann Green’s functions, cf. Williams
1999). In WFS, typically an approximative approach is
employed to reduce the situation to the monopole only
case (cf. Spors et al. 2008): it can be shown that

GN,p(x|x0) = 2G3D(x|x0) and (28)
GN,l(x2D|x2D

0 ) = 2G2D(x2D|x2D
0 ) (29)

represent Neumann Green’s functions for planar respec-
tively linear boundaries S0 or x0 (cf. Williams 1999,
section 8.8.3). This holds not true for arbitrarily
shaped boundaries. However, the artifacts resulting
from applying GN,p(x|x0) or GN,l(x2D|x2D

0 ) and the
assumption of Neumann boundary conditions on S0 or
x0 for arbitrarily shaped boundaries can be reduced
by deactivating secondary sources at whose positions
the local propagation direction npf(x0) of the primary
field (cf. section Primary Sources) features no positive
component in direction of the boundary normal n(x0)
(Spors 2007a). This is carried out by multiplication of
the driving functions by the so-called secondary source
activation factor

a(x0) =

1 if 〈npf(x0),n(x0)〉 > 0,

0 otherwise,
(30)

defined here in principle according to Spors (2007a,b),
but based on geometrical criteria rather than the primary
field intensity vector. This procedure results in general
in two major consequences: a sound field outside the
listening area or listening volume arises and the field
created inside the listening area or volume deviates from
the primary field (cf. Spors et al. 2008). To ensure that no
contributions of the erroneous outer field propagate into
the listening area or volume and interfere with the field
created intentionally, convex listening area or volume
boundaries are required. In the following, monopole
only 2.5D WFS is discussed, including the derivation
of so-called driving functions D(x0) allowing for the
synthesis of spherical primary sound fields. Driving
functions represent the spectra of the signals the secondary
monopole sources have to be driven with to generate the
target primary sound field. Equation 26 can be adapted
to resemble 2.5D monopole WFS with the reference point
xA

ref,ssc in the listening area A by

P2.5D(x|xA
ref,ssc) =

˛

x0

D2.5D(xA
0 |xA

ref,ssc)

×G3D(x|xA
0 )dx0, ∀x 6= xA

0 ,
(
k
∣∣xA

ref,ssc − xA
0
∣∣) > 0,

(31)



with the driving functions for 2.5D monopole WFS

D2.5D(xA
0 |xA

ref,ssc) =

= −2a(xA
0 )Css,G(xA

ref,ssc|xA
0 ) ∂
∂nP (x2D

0 ).
(32)

Derived from 2D WFS, 2.5D monopole WFS is also
not capable of generating spherical waves at arbitrary
positions (cf. section 2.5D Wave Field Synthesis). The
2.5D scenario with PSC with respect to xA

ref,ssc for the
reproduction of a primary spherical wave generated by a
point source at xA

p within the listening area A is derived
from equation 27 to

Psw,psc,2.5D(x|xA
ref,ssc|xA

ref,psc|xA
p) =

=
˛

x0

D2.5D,psc(xA
0 |xA

p |xA
ref,ssc|xA

ref,psc)

×G3D(x|xA
0 )dx0, ∀x 6= xA

0 ,(
k
∣∣xA

ref,psc − xA
p
∣∣) > 0,

(
k
∣∣xA

ref,ssc − xA
0
∣∣) > 0.

(33)

The primary and secondary source corrected 2.5D driving
functions are then given by

D2.5D,psc(xA
0 |xA

p |xA
ref,ssc|xA

ref,psc) =

= −2a(xA
0 )Css,G(xA

ref,ssc|xA
0 )Cps(xA

ref,psc|xA
p)

× ∂

∂nPcw(x2D
0 |x2D

p ).

(34)

Comparison to Previous Approaches
Previously derived driving functions for 2.5D monopole
WFS are based on the large-argument approximation
of the Hankel functions (cf. equations 12 and 13) for
secondary source correction, and therefore known to
produce synthesis errors for evaluation positions close
to the secondary source contours and at low frequencies
(cf. Spors and Ahrens 2010), since the approximations
are valid only for large arguments. The comparisons
are given here implementing the primary and secondary
source corrections proposed in equation 23 and 24 for
the approaches introduced in this paper using the Hankel
functions (equation 10 and 11), but can be done also
with their large-argument approximations (equation 12
and 13).

The early formulations of WFS are given specifically for
linear or curved but infinitely extended secondary source
contours (cf. Vogel 1993, Start 1996, Verheijen 1997). As
a consequence, numerical simulations or implementations
need to limit the integration region, what introduces
artifacts in the generated field, which are typically reduced
by applying a spatial truncation window (Start 1997,
section 4). Since methods for truncation are beyond
the scope of this paper, the driving functions given by
Verheijen (1997) are included in the comparison for 2.5D
WFS, but applied to closed secondary source contours
without truncation, using the secondary source activation
factor given in equation 30. Expressing the cosine of
the angle between the secondary source contour and the
vector

(
xA

0 − xA
p
)
by the scalar product of the vector and

the contour normal, equation 2.32b in Verheijen (1997)

can be given using equation 34 in Spors et al. (2008) and
the nomenclature introduced here by

D2.5D,sw,ve(xA
0 |xA

ref) = a(xA
0 )
√

k

2π
e− j(k|xA

0 −xA
p |−π

4 )√∣∣xA
0 − xA

p
∣∣

×

√
|xA

ref − xA
0 |∣∣xA

0 − xA
p
∣∣+ |xA

ref − xA
0 |

(xA
0 − xA

p)Tn(xA
0 )∣∣xA

0 − xA
p
∣∣ P̂a.

(35)

Figure 3 shows the error of the synthesis of spherical
primary fields by 2.5D WFS using the driving functions
given in equation 35 for the array geometry and evaluation
positions according to figure 1. The magnitude and group
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Figure 3: Deviation of the pressure field created by 2.5D wave
field synthesis with modifications according to Verheijen (1997)
from the targeted spherical field. Array geometry, primary
source and evaluation positions according to figure 1.

delay errors are approximately frequency independent
and vanish at the optimization position for frequencies
above about 500Hz, apart from a global offset of about
−22 dB, corresponding to the factor 1/(4π). At lower
frequencies, errors and frequency dependencies occur. At
the optimization position, no primary source position
dependent level error occurs for distances larger than
about 1.5m. Away from the optimization position,
distance dependent errors are visible.

Equation 29 given by Spors et al. (2008) resembles another
driving function for the generation of spherical primary
fields by 2.5D WFS, derived introducing a primary
spherical field in the 2D KHI. According to section 2D
Wave Field Synthesis, this procedure is expected to result
in errors in the generated field. Using the nomenclature



introduced here, Spors’ driving functions are given by

D2.5D,sw,sp(xA
0 |xA

ref) = 2a(xA
0 )
(

1
jk
∣∣xA

0 − xA
p
∣∣ + 1

)
P̂a

×

√
2πk |xA

ref − xA
0 |∣∣xA

0 − xA
p
∣∣ e− j(k|xA

0 −xA
p |−π

4 )√∣∣xA
0 − xA

p
∣∣ (xA

0 − xA
p)Tn(xA

0 )∣∣xA
0 − xA

p
∣∣ .

(36)

Figure 4 shows the errors of 2.5D WFS of spherical
primary fields using equation 36.
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Figure 4: Deviation of the pressure field created by 2.5D
wave field synthesis according to Spors et al. (2008) from the
targeted spherical field. Array geometry, primary source and
evaluation positions according to figure 1.

At all evaluation positions, a frequency independent
magnitude error occurs, in addition to low frequency
deviations. The level errors at all evaluation positions
depend on the distance to the primary source.

With equations 14, 16, 22, 24, and 34, the 2.5D WFS
of a primary spherical wave based on the framework
introduced here (that is synthesizing a primary cylindrical
source with PSC) is given by

D2.5D,psc(xA
0 |xA

p |xA
ref,ssc|xA

ref,psc) = 2a(xA
0 )
∣∣xA

ref,ssc − xA
0
∣∣

× e− j(k|xA
ref,psc−xA

p |−k|xA
ref,ssc−xA

0 |+ π
2 )∣∣xA

ref,psc − xA
p
∣∣ (xA

0 − xA
p)Tn(xA

0 )∣∣xA
0 − xA

p
∣∣

× kπP̂aH
(2)
1
(
k
∣∣xA

0 − xA
p
∣∣) H(2)

0
(
k
∣∣xA

ref,ssc − xA
0
∣∣)

H
(2)
0
(
k
∣∣xA

ref,psc − xA
p
∣∣) ,

∀
(
k
∣∣xA

ref,psc − xA
p
∣∣) > 0,

(
k
∣∣xA

ref,ssc − xA
0
∣∣) > 0,(

k
∣∣xA

0 − xA
p
∣∣) > 0.

(37)

In figure 5, the errors resulting for 2.5D wave field
synthesis of a spherical primary field using the method
derived here are depicted.
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Figure 5: Deviation of the pressure field created by 2.5D
wave field synthesis from a spherical field using a cylindrical
primary field and primary source correction (PSC). Geometry,
primary source and evaluation positions according to figure 1.

At the optimization position, magnitude and group delay
errors occur below approximately 500Hz due to the
approximated Neumann Green’s function (cf. equation 29).
The level at 2 kHz is correct at the optimization position
for all distances to the primary source. Away from the
optimization point, distance dependent level errors occur,
which are larger for positions in source direction.

Conclusions
In this paper, the basic theory of wave field synthesis
is reconsidered, resulting in a global formulation of the
secondary source correction that reduces the synthesis
error over the whole listening area and allows for
the correct amplitude and phase reproduction at the
(secondary source correction) reference position.

Furthermore, primary source correction (PSC) is in-
troduced, which permits at a reference position the
correct synthesis of spherical waves evolving in the plane
defined by the listening area, including the correct inverse
proportionality of level and distance.
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